题目内容

如果a、b、c是非零实数,且a+b+c=0,那么
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
的所有可能的值为(  )
A、0B、1或-1
C、2或-2D、0或-2
分析:根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.
解答:解:由已知可得:a,b,c为两正一负或两负一正.
①当a,b,c为两正一负时:
a
|a|
+
b
|b|
+
c
|c|
=1,
abc
|abc|
=-1所以
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
=0

②当a,b,c为两负一正时:
a
|a|
+
b
|b|
+
c
|c|
=-1,
abc
|abc|
=1所以
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
=0

由①②知
a
|a|
+
b
|b|
+
c
|c|
+
abc
|abc|
所有可能的值为0.
应选A.
点评:本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网