题目内容

1.如图,A、B是双曲线y=$\frac{k}{x}$上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k的值为8.

分析 过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=$\frac{1}{2}$BE,设A(x,$\frac{k}{x}$),则B(2x,$\frac{k}{2x}$),故CD=$\frac{k}{4x}$,AD=$\frac{k}{x}$-$\frac{k}{4x}$,再由△ADO的面积为1求出k的值即可得出结论.

解答 解:过点B作BE⊥x轴于点E,
∵D为OB的中点,
∴CD是△OBE的中位线,即CD=$\frac{1}{2}$BE.
设A(x,$\frac{k}{x}$),则B(2x,$\frac{k}{2x}$),CD=$\frac{k}{4x}$,AD=$\frac{k}{x}$-$\frac{k}{4x}$,
∵△ADO的面积为1,
∴$\frac{1}{2}$AD•OC=3,$\frac{1}{2}$($\frac{k}{x}$-$\frac{k}{4x}$)•x=3,解得k=8,
故答案为:8.

点评 本题考查的是反比例函数系数k的几何意义,熟知反比例函数y=$\frac{k}{x}$图象中任取一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是$\frac{1}{2}$|k|,且保持不变是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网