题目内容

27、如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(  )
分析:反比例函数上的点的横纵坐标的乘积相等.根据题意和图形可初步判断为点G,利用直角梯形的性质求得点A和点G的坐标即可判断.
解答:解:在直角梯形AOBC中
∵AC∥OB,CB⊥OB,OB=18,BC=12,AC=9
∴点A的坐标为(9,12)
∵点G是BC的中点
∴点G的坐标是(18,6)
∵9×12=18×6=108
∴点G与点A在同一反比例函数图象上
故选A.
点评:此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意对各个知识点的灵活应用,灵活利用直角梯形的性质求得相关点的坐标,再利用反比例函数上的点的横纵坐标的乘积相等来判断.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网