题目内容

如图,点C,D是以线段AB为公共弦的两条圆弧的中点,AB=4,点E,F分别是线段CD,AB上的动点,设AF=x,AE2-FE2=y,则能表示y与x的函数关系的图象是


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:延长CE交AB于G,△AEG和△FEG都是直角三角形,运用勾股定理列出y与x的函数关系式即可判断出函数图象.
解答:解:如右图所示,延长CE交AB于G.设AF=x,AE2-FE2=y;
∵△AEG和△FEG都是直角三角形
∴由勾股定理得:AE2=AG2+GE2,FE2=FG2+EG2
∴AE2-FE2=AG2-FG2,即y=22-(2-x)2=-x2+4x,
这个函数是一个二次函数,抛物线的开口向下,对称轴为x=2,与x轴的两个交点坐标分别是(0,0),(4,0),顶点为(2,4),自变量0<x<4.
所以C选项中的函数图象与之对应.
故选C.
点评:本题为几何与函数相结合的题型,同学们应注意运用勾股定理的重要性,它就是解决此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网