题目内容

8.如图,在△ABC中,D是AB边的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.
(1)求证:DB=CF;
(2)当△ABC满足AC=BC时(请添加一条件),四边形BDCF为矩形,请说明理由.

分析 (1)求出∠EAD=∠CFE,根据AAS证△AED≌△FEC,推出AD=CF,根据AD=BD即可求出答案;
(2)根据等腰三角形性质求出∠CDB=90°,根据平行四边形的判定推出平行四边形BDCF,即可推出四边形是矩形.

解答 (1)证明:∵CF∥AB,
∴∠EAD=∠CFE,
∵E是CD的中点,
∴CE=DE,
∵在△AED和△FEC中
$\left\{\begin{array}{l}{∠EAD=∠CFE}\\{∠CEF=∠DEA}\\{CE=ED}\end{array}\right.$,
∴△AED≌△FEC(AAS),
∴AD=CF,
∵D是AB的中点,
∴AD=BD,
∴BD=CF.

(2)解:在△ABC中添加一个条件:AC=BC,使四边形BDCF为矩形,
理由是:∵BD=CF,CF∥AB,
∴四边形BDCF是平行四边形,
∵AC=BC,D为AB中点,
∴CD⊥AB,
∴∠CDB=90°,
∴平行四边形BDCF是矩形,
故答案为:AC=BC.

点评 本题考查了矩形、平行四边形的判定,全等三角形的性质和判定,等腰三角形的性质,平行线的性质,主要考查学生能否熟练地运用性质进行推理,题型较好,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网