题目内容

先观察下列等式,然后用你发现的规律解答下列问题.
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

┅┅
(1)计算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
;(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值为
17
35
,求n的值.
分析:通过观察数据找到规律,并以规律解题即可.
解答:解:(1)原式=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+
1
5
-
1
6
=1-
1
6
=
5
6


(2)原式=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1


(3)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)
+…+
1
2
(
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)
=
n
2n+1

n
2n+1
=
17
35
,解得n=17,
经检验n=17是方程的根,
∴n=17.
点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出分式的符号的变化规律是此类题目中的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网