题目内容

17.如图,已知AB∥CD∥EF,AD:AF=3:5,BE=12,那么CE的长等于$\frac{24}{5}$.

分析 根据平行线分线段成比例得到$\frac{AD}{AF}$=$\frac{BC}{BE}$,即$\frac{3}{5}$=$\frac{BC}{12}$,可计算出BC,然后利用CE=BE-BC进行计算.

解答 解:∵AB∥CD∥EF,
∴$\frac{AD}{AF}$=$\frac{BC}{BE}$,即$\frac{3}{5}$=$\frac{BC}{12}$,
∴BC=$\frac{36}{5}$,
∴CE=BE-BC=12-$\frac{36}{5}$=$\frac{24}{5}$.
故答案为:$\frac{24}{5}$.

点评 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网