题目内容

1.如图,长方形ABCD中,AB=4,BC=8,将长方形沿BC折叠,点C落在C′处.△BDE的面积是多少?

分析 由折叠可知,∠CBD=∠EBD,再由AD∥BC,得到∠CBD=∠EDB,即可得到∠EBD=∠EDB,于是得到BE=DE,设DE=x,则BE=x,AE=8-x,在Rt△ABE中,由勾股定理求出x的值,再由三角形的面积公式求出面积的值.

解答 解:由折叠可知,∠CBD=∠EBD,
∵AD∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
设DE=x,则BE=x,AE=8-x,
在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8-x)2=x2
解得:x=5,
所以S△BDE=$\frac{1}{2}$DE×AB=$\frac{1}{2}$×5×4=10.

点评 本题主要考查翻折变换的知识点,解答本题的关键是熟练掌握等腰三角形的判定与勾股定理的知识,此题难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网