题目内容

12.解方程组:
(1)$\left\{\begin{array}{l}{7x-3y=5}\\{-5x+6y=-6}\end{array}\right.$            
(2)$\left\{\begin{array}{l}{2p-3q=13}\\{-p+5=4q}\end{array}\right.$
(3)$\left\{\begin{array}{l}{\frac{1}{5}x+\frac{1}{3}y=\frac{2}{5}}\\{0.5x-0.3y=0.2}\end{array}\right.$         
(4)$\left\{\begin{array}{l}{x+1=5(y+2)}\\{3(2x-5)-4(3y+4)=5}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组整理后,利用代入消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{7x-3y=5①}\\{-5x+6y=-6②}\end{array}\right.$,
①×2+②得:9x=4,即x=$\frac{4}{9}$,
把x=$\frac{4}{9}$代入①得:y=-$\frac{17}{27}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{4}{9}}\\{y=-\frac{17}{27}}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{2p-3q=13①}\\{p+4q=5②}\end{array}\right.$,
②×2-①得:11q=-3,即q=-$\frac{3}{11}$,
把q=-$\frac{3}{11}$代入②得:p=$\frac{67}{11}$,
则方程组的解为$\left\{\begin{array}{l}{p=\frac{67}{11}}\\{q=-\frac{3}{11}}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{3x+5y=6①}\\{5x-3y=2②}\end{array}\right.$,
①×3+②×5得:34x=28,即x=$\frac{14}{17}$,
把x=$\frac{14}{17}$代入①得:y=$\frac{12}{17}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{14}{17}}\\{y=\frac{12}{17}}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{x=5y+9①}\\{x-2y=6②}\end{array}\right.$,
把①代入②得:5y+9-2y=6,即y=-1,
把y=-1代入①得:x=4,
则方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网