题目内容
在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为 .
(4分)2的相反数是( )
A.2 B.﹣2 C. D.
如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上运动(与A、B两点不重合),如果∠P=46°,那么∠ACB的度数是 .
(10分)如图,在平面直角坐标系中,四边形的顶点O为坐标原点,点C在x轴的正半轴上,且于点,点的坐标为(2,2),=,60°,点是线段上一点,且,连接.
(1)求证:△AOD是等边三角形;
(2)求点的坐标;
(3)平行于的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形截得的线段长为,直线l与x轴交点的横坐标为t.
① 当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t的取值范围).
② 若,请直接写出此时的值.
(6分)在一个不透明的盒子里,装有三个分别写有数字6,2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:
(1)两次取出小球上的数字相同;
(2)两次取出小球上的数字之和大于10.
不等式组的解集在数轴上表示为( ).
(满分14分)如图,已知,,点从点开始沿边向点以的速度移动,点从点开始向点以相同的速度移动,若、同时出发,移动时间为(0≤≤6).
(1)设的面积为,求关于的函数解析式;
(2)当的面积最大时,沿直线翻折后得到,试判断点是否落在直线上,并说明理由.
(3)当为何值时,与相似.
下列事件是必然事件的是( )
A.抛一枚硬币,正面朝上
B.打开电视,正在播放动画片
C.个人分成两组,一定有个人分在一组
D.随意掷两个均匀的骰子,上面的点数之和为
(本题8分)解不等式组:,并把解集在数轴上表示出来.