ÌâÄ¿ÄÚÈÝ

11£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Rt¡÷ABOµÄб±ßOAÔÚxÖáÉÏ£¬µãBÔÚµÚÒ»ÏóÏÞÄÚ£¬AO=4£¬¡ÏBOA=30¡ã£®µãC£¨t£¬0£©ÊÇxÖáÕý°ëÖáÉÏÒ»¶¯µã£¨t£¾0ÇÒt¡Ù4£©£º
£¨1£©µãBµÄ×ø±êΪ£¨3£¬$\sqrt{3}$£©£»¹ýµãO¡¢B¡¢AµÄÅ×ÎïÏß½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x2+$\frac{4\sqrt{3}}{3}$x£»
£¨2£©×÷¡÷OBCµÄÍâ½ÓÔ²¡ÑP£¬µ±Ô²ÐÄPÔÚ£¨1£©ÖÐÅ×ÎïÏßÉÏʱ£¬ÇóµãCºÍÔ²ÐÄPµÄ×ø±ê£»
£¨3£©Éè¡÷OBCµÄÍâ½ÓÔ²¡ÑPÓëyÖáµÄÁíÒ»½»µãΪD£¬Ç뽫ODÓú¬tµÄ´úÊýʽ±íʾ³öÀ´£¬²¢ÇóCDµÄ×îСֵ£®

·ÖÎö £¨1£©×÷BE¡ÍOAÓÚE£¬Ôò¡ÏBEO=90¡ã£¬ÏÈÓÉÈý½Çº¯ÊýÇó³öOB£¬ÔÙÓÉÈý½Çº¯ÊýÇó³öBE¡¢OE£¬¼´¿ÉµÃ³öµãBµÄ×ø±ê£»Óôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ¼´¿É£»
£¨2£©ÏÈÇó³öOBµÄÖд¹ÏߵĽâÎöʽ£¬µÃ³öP£¨$\frac{t}{2}$£¬-$\frac{\sqrt{3}}{2}t$+2$\sqrt{3}$£©£¬°ÑµãP×ø±ê´úÈëÅ×ÎïÏß½âÎöʽ£¬½â·½³ÌÇó³öt£¬¼´¿ÉµÃ³öP¡¢CµÄ×ø±ê£»
£¨3£©Á¬½ÓCD£¬ÔòCDΪֱ¾¶£¬µÃ³ö¡ÏDBC=90¡ã£»·ÖÁ½ÖÖÇé¿ö£º
¢Ùµ±µãCÔÚÏß¶ÎOAÉÏʱ£¬Ö¤Ã÷¡÷ABC¡×¡÷OBD£¬µÃ³ö±ÈÀýʽ$\frac{OD}{AC}=\frac{OB}{AB}$£¬¼´¿ÉµÃ³öOD£¬¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉÇó³öCDµÄ×îСֵ£»
¢Úµ±µãCÔÚµãAÓұߣ¨t£¾4£©Ê±£¬Í¬Àí¿ÉµÃ£º¡÷ABC¡×¡÷OBD£¬µÃ³öOD=$\sqrt{3}$t-4$\sqrt{3}$£»¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉµÃ³öCDµÄ×îСֵ£®

½â´ð ½â£º£¨1£©×÷BE¡ÍOAÓÚE£¬Èçͼ1Ëùʾ£º
Ôò¡ÏBEO=90¡ã£¬
¡ß¡ÏABO=90¡ã£¬¡ÏBOA=30¡ã£¬
¡àOB=OA•cos30¡ã=4¡Á$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$£¬
¡àBE=$\frac{1}{2}$OB=$\sqrt{3}$£¬
¡àOE=$\sqrt{3}$BE=3£¬
¡àµãBµÄ×ø±êΪ£º£¨3£¬$\sqrt{3}$£©£»
¹Ê´ð°¸Îª£º£¨3£¬$\sqrt{3}$£©£»
¡ßO£¨0£¬0£©£¬A£¨4£¬0£©£¬B£¨3£¬$\sqrt{3}$£©£¬
¡à¹ýµãO¡¢B¡¢AµÄÅ×ÎïÏß½âÎöʽΪy=ax2+bx£¬
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{16a+4b=0}&{\;}\\{9a+3b=\sqrt{3}}&{\;}\end{array}\right.$£¬
½âµÃ£ºa=-$\frac{\sqrt{3}}{3}$£¬b=$\frac{4\sqrt{3}}{3}$£¬
¡à¹ýµãO¡¢B¡¢AµÄÅ×ÎïÏß½âÎöʽΪ£ºy=-$\frac{\sqrt{3}}{3}$x2+$\frac{4\sqrt{3}}{3}$x£»
¹Ê´ð°¸Îª£ºy=-$\frac{\sqrt{3}}{3}$x2+$\frac{4\sqrt{3}}{3}$x£»
£¨2£©Èçͼ2Ëùʾ£º¡ßÍâ½ÓÔ²Ô²ÐÄPÊÇÖ±Ïßx=$\frac{t}{2}$ÓëOBµÄÖд¹Ïß½»µã£¬
¡àµãPµÄºá×ø±êΪ$\frac{t}{2}$£¬
¡ßOBµÄÖд¹Ïß¹ýµã£¨2£¬0£©ºÍOBµÄÖе㣨$\frac{3}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬
ÉèOBµÄÖд¹ÏߵĽâÎöʽΪ£ºy=kx+b£¬
Ôò$\left\{\begin{array}{l}{2k+b=0}\\{\frac{3}{2}k+b=\frac{\sqrt{3}}{2}}\end{array}\right.$£¬
½âµÃk=-$\sqrt{3}$£¬b=2$\sqrt{3}$£¬
¡àOBµÄÖд¹ÏߵĽâÎöʽΪ£ºy=-$\sqrt{3}$x+2$\sqrt{3}$£¬
¡àP£¨$\frac{t}{2}$£¬-$\frac{\sqrt{3}}{2}t$+2$\sqrt{3}$£©£¬
ҪʹPÔÚÅ×ÎïÏßÉÏ£¬ÔòPµã×ø±êÂú×ã$\frac{\sqrt{3}}{2}$t+2$\sqrt{3}$=-$\frac{\sqrt{3}}{3}$¡Á£¨$\frac{t}{2}$£©2+$\frac{4\sqrt{3}}{3}$¡Á$\frac{t}{2}$£¬
½âµÃ£ºt=2£¬»òt=12£¬
¡àPµãµÄ×ø±êΪ£¨1£¬$\sqrt{3}$£©£¬»ò£¨6£¬-4$\sqrt{3}$£©£¬
µãCµÄ×ø±êΪ£¨2£¬0£©£¬»ò£¨12£¬0£©£»
£¨3£©Á¬½ÓCD¡¢BD£¬Èçͼ3Ëùʾ£º
ÔòCDΪֱ¾¶£¬
¡à¡ÏDBC=90¡ã£»
·ÖÁ½ÖÖÇé¿ö£º¢Ùµ±µãCÔÚÏß¶ÎOAÉÏʱ£¬
¡ß¡ÏDBC=¡ÏOBA=90¡ã£¬
¡à¡Ï1+¡Ï3=¡Ï2+¡Ï3=90¡ã£¬
¼´¡Ï1=¡Ï2£¬
ÓÖ¡ß¡ÏBOD=¡ÏBAC=60¡ã£¬
¡à¡÷ABC¡×¡÷OBD£¬
¡à$\frac{OD}{AC}=\frac{OB}{AB}$£¬
¡àOD=$\frac{£¨4-t£©¡Á2\sqrt{3}}{2}$=-$\sqrt{3}$t+4$\sqrt{3}$£¬
¸ù¾Ý¹´¹É¶¨ÀíµÃ£ºCD=$\sqrt{O{D}^{2}+O{C}^{2}}$=$\sqrt{£¨-\sqrt{3}t+4\sqrt{3}£©^{2}+{t}^{2}}$=$\sqrt{4£¨t-3£©^{2}+12}$£¬
¡àµ±t=3ʱ£¬CDÓÐ×îСֵΪ2$\sqrt{3}$£»
¢Úµ±µãCÔÚµãAÓұߣ¨t£¾4£©Ê±£¬
ͬÀí¿ÉµÃ£º¡÷ABC¡×¡÷OBD£¬
¡àOD=$\sqrt{3}$t-4$\sqrt{3}$£»
¸ù¾Ý¹´¹É¶¨ÀíµÃ£ºCD=$\sqrt{O{D}^{2}+O{C}^{2}}$=$\sqrt{£¨\sqrt{3}t-4\sqrt{3}£©^{2}+{t}^{2}}$=$\sqrt{4£¨t-3£©^{2}+12}$£¬
¡àµ±t=3ʱ£¬CDÓÐ×îСֵΪ2$\sqrt{3}$£»
×ÛÉÏËùÊö£ºODΪ-$\sqrt{3}$t+4$\sqrt{3}$£¬»ò$\sqrt{3}$t-4$\sqrt{3}$£»CDµÄ×îСֵΪ2$\sqrt{3}$£®

µãÆÀ ±¾ÌâÊÇÔ²µÄ×ÛºÏÌâÄ¿£¬¿¼²éÁË×ø±êÓëͼÐÎÐÔÖÊ¡¢Èý½Çº¯Êý¡¢Óôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýºÍ¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢Ô²ÖܽǶ¨Àí¡¢¹´¹É¶¨Àí¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢×îСֵµÈ֪ʶ£»±¾ÌâÄѶȽϴó£¬×ÛºÏÐÔÇ¿£¬ÌرðÊÇ£¨2£©£¨3£©ÖУ¬ÐèҪͨ¹ý×÷¸¨ÖúÏßÖ¤Ã÷Èý½ÇÐÎÏàËÆºÍÇó³öÖ±ÏߵĽâÎöʽ²ÅÄܵóö½á¹û£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø