题目内容

3.如图,放置的△OA1B1、△B1A2B2、△B2A3B3,…,都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标为(1008,1007$\sqrt{3}$).

分析 根据题意得出直线B2B1的解析式为:y=$\sqrt{3}$x,进而得出B1,B2,B3坐标,进而得出坐标变化规律,进而得出答案.

解答 解:过B1向x轴作垂线B1C,垂足为C,

由题意可得:A(1,0),AO∥A1B1,∠B1OC=30°,
∴CB1=OB1cos30°=$\frac{\sqrt{3}}{2}$,
∴B1的横坐标为:$\frac{1}{2}$,则B1的纵坐标为:$\frac{\sqrt{3}}{2}$,
∴点B1,B2,B3,…都在直线y=$\sqrt{3}$x上,
∴B1($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
同理可得出:A1的横坐标为:1,
∴y=$\sqrt{3}$,
∴A1(2,$\sqrt{3}$),

An(1+$\frac{n+1}{2}$,$\frac{(n+1)\sqrt{3}}{2}$).
∴A2015(1008,1007$\sqrt{3}$).
故答案为(1008,1007$\sqrt{3}$).

点评 此题主要考查了一次函数图象上点的坐标特征以及数字变化类,得出A点横纵坐标变化规律是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网