题目内容

5.已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是(  )
A.16$\sqrt{3}$B.8$\sqrt{3}$C.4$\sqrt{3}$D.8

分析 由菱形的性质得出AB=BC,OA=$\frac{1}{2}$AC=2,OB=$\frac{1}{2}$BD,AC⊥BD,∠BAD+∠ABC=180°,再证明△ABC是等边三角形,得出AB=AC=4,根据勾股定理求出OB,得出BD,由菱形的面积=$\frac{1}{2}$AC•BD,即可得出结论.

解答 解:∵四边形ABCD是菱形,
∴AB=BC,OA=$\frac{1}{2}$AC=2,OB=$\frac{1}{2}$BD,AC⊥BD,∠BAD+∠ABC=180°,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC=4,
∴OB=$\sqrt{A{B}^{2}-O{A}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
∴BD=2OB=4$\sqrt{3}$,
∴菱形ABCD的面积=$\frac{1}{2}$AC•BD=$\frac{1}{2}$×4×4$\sqrt{3}$=8$\sqrt{3}$;
故选:B.

点评 本题考查了菱形的性质、等边三角形的判定与性质、勾股定理、菱形面积的计算;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网