题目内容
下列长度的各组线段能组成一个三角形的是( )
A.4cm,6cm,11cm B.4cm,5cm,1cm C.3cm,4cm,5cm D.2cm,3cm,6cm
(本题满分5分)老师出了这样一道题:已知m=2015,求代数式的值.小明不小心把2015看成了2014,但计算结果却和代入2014计算得出的结果一致,聪明的你,能说明其中的原因吗?试试看!
菱形具有而矩形不一定具有的性质是 ( )
A.对角线互相垂直 B.对角线相等
C.对角线互相平分 D.对角互补
若2x+y-3=0,则4x×2y= .
如图,△ABC的角平分线 CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论是( )
A.只有①③ B.只有②④ C.只有①③④ D.①②③④
(本题满分10分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年4月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.
(1)今年4月份A款汽车每辆售价为多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为6.5万元,B款汽车每辆进价为5万元,公司预计用不少于90万元且不多于96万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为7万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所购进汽车全部售完,且所有方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?
如图,已知Rt△ABC中,ACB=90,以斜边AB为边向外作正方形ABCD,且对角线交于点O,连接OC.已知AC=3,OC=,则另一条直角边BC的长为 .
(本题8分)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线∥PQ,点D在点C的左边且CD=3.
(1)直接写出△BCD的面积.
(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,则∠CEF与∠CFE有何数量关系?请说明理由.
(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,直接写出其值;若变化,直接写出变化范围.
如图,函数和的图像相交于点,则关于的不等式的解集为___________.