题目内容
如图,等边三角形AEF与菱形ABCD有一公共顶点A,E、F在BC、CD上,且它们的边长相等,则∠B=________度.
80
分析:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180°即可求得∠B的度数.
解答:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,
设∠B=x,则∠BAD=180°-x,
∠BAE=∠DAF=180°-2x,
又∵∠BAE+∠EAF+∠FAD=∠BAD
即180°-2x+180°-2x+60°=180°-x
解得x=80°,
故答案为:80°.
点评:本题考查了正三角形各内角为60°、各边长相等的性质,考查了菱形邻角之和为180°的性质,本题中根据关于x的等量关系式求x的值是解题的关键.
分析:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,根据邻角之和为180°即可求得∠B的度数.
解答:正△AEF的边长与菱形ABCD的边长相等,所以AB=AE,AF=AD,
设∠B=x,则∠BAD=180°-x,
∠BAE=∠DAF=180°-2x,
又∵∠BAE+∠EAF+∠FAD=∠BAD
即180°-2x+180°-2x+60°=180°-x
解得x=80°,
故答案为:80°.
点评:本题考查了正三角形各内角为60°、各边长相等的性质,考查了菱形邻角之和为180°的性质,本题中根据关于x的等量关系式求x的值是解题的关键.
练习册系列答案
相关题目