题目内容
5.在平行四边形ABCD中,已知∠A:∠B=1:2,则∠B的度数是( )| A. | 45° | B. | 90° | C. | 120° | D. | 135° |
分析 由在平行四边形ABCD中,已知∠A:∠B=1:2,根据平行四边形的邻角互补,即可求得答案.
解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°,
∵∠A:∠B=1:2,
∴∠B=180°×$\frac{2}{3}$=120°.
故选C.
点评 此题考查了平行四边形的性质.注意掌握平行四边形的邻角互补定理的应用是解此题的关键.
练习册系列答案
相关题目
15.在平面直角坐标系中,直线y=2x-6不经过( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
16.已知一次函数y=kx+b经过两点(x1,y1),(x2,y2),若k<0,则当x1<x2时,( )
| A. | y1<y2 | B. | y1>y2 | C. | y1=y2 | D. | 无法比较 |
13.计算(2+$\sqrt{3}$)($\sqrt{3}$-2)的结果是( )
| A. | 1 | B. | 0 | C. | -1 | D. | -7 |
20.将二次函数y=5x2的图象先向右平移3个单位,再向上平移4个单位后,所得的图象的函数表达式是( )
| A. | y=5(x-3)2+4 | B. | y=5(x+3)2-4 | C. | y=5(x+3)2+4 | D. | y=5(x-3)2-4 |
10.下列计算正确的是( )
| A. | a3•a4=a12 | B. | (a3)2=a6 | C. | (ab)3=ab3 | D. | a6÷a3=a2 |
17.2的平方根是( )
| A. | ±$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | -$\sqrt{2}$ | D. | 4 |
14.使得分式$\frac{x+3}{x-2}$的值为零的条件是( )
| A. | x≠3 | B. | x=-2 | C. | x≠2 | D. | x=-3 |