题目内容
数轴上的点A到原点的距离是6,则点A表示的数为( )
A、6或-6 B、6 C、-6 D、3或-3
如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.
如图所示,在平行四边形ABCD中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分线.下列说法正确的是( )
①BE=CF ②AE是∠DAB的角平分线 ③∠DAE+∠DCF=120°.
A、① B、①② C、①②③ D、都不正确
不等式组的解集是 .
将函数y=x2+6x+7进行配方正确的结果应为( )
A、y=(x+3)2+2 B、y=(x-3)2+2
C、y=(x+3)2-2 D、y=(x-3)2-2
甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.
(1)下列事件是必然事件的是( )
A、乙抽到一件礼物
B、乙恰好抽到自己带来的礼物
C、乙没有抽到自己带来的礼物
D、只有乙抽到自己带来的礼物
(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.
某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:=1.69m,=1.69m,=0.0006,=0.00315,则这两名运动员中 的成绩更稳定.
如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.
(1)若l:y=-2x+2,则P表示的函数解析式为 ;若P:y=-x2-3x+4, 则l表示的函数解析式为 .
(2)求P的对称轴(用含m,n的代数式表示);
(3)如图②,若l:y=-2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(4)如图③,若l:y=mx-4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.
函数y=中,自变量x的取值范围是