题目内容

11.已知如图,?ABCD中,AE⊥BC于E,AF⊥DC于F,AE=3.5,AF=2.8,∠EAF=30°,则AB=7,AD=5.6,BC与AD间的距离是3.5,S?ABCD=19.6.

分析 在四边形AECF中由∠EAF=30°得∠BCD=150°,根据平行四边形的性质得∠D=∠B=180°-∠BCD=30°,根据直角三角形的性质可得AB=2AE=7、AD=2AF=5.6,由直线间的距离及平行四边形面积公式可得答案.

解答 解:∵AE⊥BC,AF⊥DC,
∴∠AEC=∠AFC=90°,
∵∠EAF=30°,
∴∠BCD=360°-∠AEC-∠AFC-∠EAF=150°,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠D=∠B=180°-∠BCD=30°,
在Rt△ABE中,∵AE=3.5,
∴AB=2AE=7,
在Rt△ADF中,∵AF=2.8,
∴AD=2AF=5.6,
BC与AD间的距离是3.5,S?ABCD=BC•AE=AD•AE=5.6×3.5=19.6,
故答案为:7,5.6,3.5,19.6.

点评 本题主要考查平行四边形的性质,熟练掌握四边形内角和、平行四边形的性质、直角三角形的性质及平行四边形的面积公式是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网