题目内容
考点:全等三角形的判定与性质,等腰直角三角形
专题:计算题
分析:CD=2BE,理由为:延长BE交CA延长线于F,由CD为角平分线得到一对角相等,再由一对直角相等,CE为公共边,利用ASA得到三角形CEF与三角形CEB全等,利用全等三角形对应边相等得到FE=BE,利用等角的余角相等得到一对角相等,再由一对直角相等,利用ASA得到三角形ABF与三角形ACD全等,利用全等三角形的性质得到CD=BF,等量代换即可得证.
解答:
解:CD=2BE,理由为:
延长BE交CA延长线于F,
∵CD平分∠ACB,
∴∠FCE=∠BCE,
在△CEF和△CEB中,
,
∴△CEF≌△CEB(ASA),
∴FE=BE,
∵∠DAC=∠CEF=90°,
∴∠ACD+∠F=∠ABF+∠F=90°,
∴∠ACD=∠ABF,
在△ACD和△ABF中,
,
∴△ACD≌△ABF(ASA),
∴CD=BF,
∴CD=2BE.
延长BE交CA延长线于F,
∵CD平分∠ACB,
∴∠FCE=∠BCE,
在△CEF和△CEB中,
|
∴△CEF≌△CEB(ASA),
∴FE=BE,
∵∠DAC=∠CEF=90°,
∴∠ACD+∠F=∠ABF+∠F=90°,
∴∠ACD=∠ABF,
在△ACD和△ABF中,
|
∴△ACD≌△ABF(ASA),
∴CD=BF,
∴CD=2BE.
点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目