题目内容

如图,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究线段BE和CD的数量关系,并证明你的结论.
考点:全等三角形的判定与性质,等腰直角三角形
专题:计算题
分析:CD=2BE,理由为:延长BE交CA延长线于F,由CD为角平分线得到一对角相等,再由一对直角相等,CE为公共边,利用ASA得到三角形CEF与三角形CEB全等,利用全等三角形对应边相等得到FE=BE,利用等角的余角相等得到一对角相等,再由一对直角相等,利用ASA得到三角形ABF与三角形ACD全等,利用全等三角形的性质得到CD=BF,等量代换即可得证.
解答:解:CD=2BE,理由为:
延长BE交CA延长线于F,
∵CD平分∠ACB,
∴∠FCE=∠BCE,
在△CEF和△CEB中,
∠FCE=∠BCE
CE=CE
∠CEF=∠CEB=90°

∴△CEF≌△CEB(ASA),
∴FE=BE,
∵∠DAC=∠CEF=90°,
∴∠ACD+∠F=∠ABF+∠F=90°,
∴∠ACD=∠ABF,
在△ACD和△ABF中,
∠ACD=∠ABF
AC=AB
∠CAD=∠BAF=90°

∴△ACD≌△ABF(ASA),
∴CD=BF,
∴CD=2BE.
点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网