题目内容

9.如图,在平行四边形ABCD中,E为AB边上的点,BE=BC,将△ADE沿DE翻折,点A的对应点F恰好落在CE上.∠ADF=84°,则∠BEC=32°.

分析 由折叠的性质:∠DFE=∠A,设∠BEC=x,由等腰三角形的性质得出∠BCE=∠BEC=x,与平行四边形的性质得出∠A=∠BCD,AB∥CD,得出∠DCF=∠BEC=x,∠DFE=∠A=∠BCD=2x,在四边形ADFE中,由四边形内角和定理得出方程,解方程即可.

解答 解:由折叠的性质可得:∠DFE=∠A,
设∠BEC=x,
∵BE=BC,
∴∠BCE=∠BEC=x,
∵四边形ABCD是平行四边形,
∴∠A=∠BCD,AB∥CD,
∴∠DCF=∠BEC=x,
∴∠DFE=∠A=∠BCD=2x,
在四边形ADFE中,∠A+∠ADF+∠DFE+∠AEF=360°,
∴2x+84°+2x+180°-x=360°,
解得:x=32°,
∴∠BEC=32°;
故答案为:32°.

点评 此题考查了平行四边形的性质、折叠的性质、等腰三角形的性质以及四边形内角和定理.熟练掌握平行四边形的性质和折叠的性质,由四边形内角和定理得出方程是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网