题目内容
18.为了鼓励市民节约用水,盐城市居民生活用水按阶梯式水价计费.下表是盐城市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:| 用户每月用水量 | 自来水单价(元/吨) | 污水处理费用(元/吨) |
| 17吨及以下 | a | 0.80 |
| 超过17吨不超过30吨的部分 | b | 0.80 |
| 超过30吨的部分 | 6.00 | 0.80 |
已知小明家2015年2月份用水20吨,交水费66元;3月份用水35吨,交水费150元.
(1)求a、b的值.
(2)实行“阶梯水价”收费之后,该市一户居民用水多少吨时,其当月的平均水费为每吨3.3元?
分析 (1)根据等量关系:“2014年4月份用水20吨,交水费66元”;“5月份用水35吨,交水费150元”可列方程组求解即可.
(2)根据“当月的平均水费每吨不超过3.3元”,列出不等式求解即可.
解答 解:(1)根据题意,得:$\left\{\begin{array}{l}{17(a+0.8)+3(b+0.8)=66}\\{17(a+0.8)+13(b+0.8)+5×(6+0.8)=150}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=2.2}\\{b=4.2}\end{array}\right.$.
答:a的值是2.2,b的值是4.2;
(2)设该户居民用水x吨,则
当x≤17时,a+0.8=3.
∵3<3.3
∴x>17
当17<x≤30时,17×3+5(x-17)=3.3x,
解得x=20.
当x>30时,不合题意.
答:该户居民用水量为20吨时,其当月的平均水费每吨为3.3元.
点评 本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.同时考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题干找出合适的等量关系.
练习册系列答案
相关题目
6.如图1,直角梯形ABCD,∠B=90°,DC∥AB,动点P从B点出发,以每秒2个单位长度,由B-C-D-A沿边运动,设点P运动的时间为x秒,△PAB的面积为y,如果关于x的函数y的图象如图2,则函数y的最大值为( )

| A. | 18 | B. | 32 | C. | 48 | D. | 72 |
3.
如图,某小区为增加居民的活动面积,将一块矩形空地设计为休闲区域,其中正六边形ABCDEF的顶点均在矩形边上,正六边形内部有一正方形GHIJ.根据设计,图中阴影部分种植草坪,则草坪面积为( )
| A. | a2 | B. | ($\frac{\sqrt{3}}{2}$+1)a2 | C. | 2a2 | D. | $\frac{\sqrt{3}+1}{2}$a2 |
7.
如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是( )
| A. | 24° | B. | 25° | C. | 30° | D. | 36° |
8.某小区超市一段时间每天订购80个面包进行销售,每售出1个面包获利润0.5元,未售出的每个亏损0.3元.(1)若今后每天售出的面包个数用x(0<x≤80)表示,每天销售面包的利润用y(元)表示,写出y与x的函数关系式;
(2)小明连续m天对该超市的面包销量进行统计,并制成了频数分别直方图(每个组距包含左边的数,但不包含右边的数)和扇形统计图,如图1、图2所示,请结合两图提供的信息,解答下列问题:
①m的值为30;
②求在m天内日销售利润少于32元的天数;

(3)如图(2)中m天内日销售面包个数在70≤x<80这个组内的销售情况如表:
请计算该组内平均每天销售面包的个数.
(2)小明连续m天对该超市的面包销量进行统计,并制成了频数分别直方图(每个组距包含左边的数,但不包含右边的数)和扇形统计图,如图1、图2所示,请结合两图提供的信息,解答下列问题:
①m的值为30;
②求在m天内日销售利润少于32元的天数;
(3)如图(2)中m天内日销售面包个数在70≤x<80这个组内的销售情况如表:
| 销售量/个 | 70 | 72 | 73 | 75 | 78 | 79 |
| 天数 | 1 | 2 | 3 | 4 | 3 | 2 |