题目内容
10.(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请在图中标明旋转中心P的位置并写出其坐标.
分析 (1)利用网格特点和旋转的性质画出点A、B的对应点A1、B1,则可得到△A2B2C1;由A2和A点坐标可判断△ABC平移的方向与距离,从而写出B2和C2的坐标,然后描点得到△A2B2C2;
(2)根据旋转的性质,连结B1B2和A1A2,它们的交点即为P点,然后写出P点坐标.
解答 解:(1)如图,△A1B1C和△A2B2C2为所作;![]()
(2)如图,点P为所作,P点坐标为($\frac{3}{2}$,-1).
点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
练习册系列答案
相关题目
18.∠α的余角为65°,则∠α的度数为( )
| A. | 35° | B. | 25° | C. | 45° | D. | 65° |
15.
甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(时)的函数图象如图,以下说法错误的是( )
| A. | 甲组加工零件数量y与时间x的关系式为y甲=40x | |
| B. | 乙组加工零件总量m=280 | |
| C. | 经过2$\frac{1}{2}$小时恰好装满第1箱 | |
| D. | 经过4$\frac{3}{4}$小时恰好装满第2箱 |
2.当a=-1时,分式$\frac{{{a^2}+a}}{{{a^2}-a}}$( )
| A. | 等于零 | B. | 等于1 | C. | 等于-1 | D. | 没有意义 |
19.
如图,直线l为正比例函数y=$\frac{\sqrt{3}}{3}$x的图象,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点Bn的坐标是( )
| A. | ($\sqrt{3}$×4n,4n) | B. | ($\sqrt{3}$×4n-1,4n-1) | C. | ($\sqrt{3}$×4n-1,4n) | D. | ($\sqrt{3}$×4n,4n-1) |
20.
已知一块蓄电池的电压为定值,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为( )
| A. | I=$\frac{32}{R}$ | B. | I=-$\frac{32}{R}$ | C. | I=$\frac{4}{R}$ | D. | I=$\frac{8}{R}$ |