题目内容

9.思考:已知直线l1,l2,l3相互平行,怎样在三条直线上各取一点作出一个等边三角形?仔细阅读小明的作图方法并证明他的方法是正确的.作法:如图,先作等边三角形ADE,使A、E在l1上,D在l3上,DE与l2交于B点,连接AB;再在l3上取一点C,使DC=EB,连接AC、BC.则△ABC是等边三角形.

分析 可以判定△AEB≌△ADC,即可得∠EAB=∠DAC,可得∠DAC+∠BAD=∠EAB+∠BAD=60°,即可解题.

解答 证明:由于△AED为等边三角形,直线l1,l2,l3相互平行,
∴AE=AD,∠EAD=∠ADC=∠AED=60°,
又EB=DC,
在△AEB与△ADC中
$\left\{\begin{array}{l}{AE=AD}\\{∠ADC=∠AED}\\{EB=DC}\end{array}\right.$,
∴△AEB≌△ADC,
则AC=AB,∠EAB=∠DAC,
∴∠DAC+∠BAD=∠EAB+∠BAD=60°,
∴△ABC为等边三角形.

点评 此题考查了全等三角形的判定与全等三角形对应角相等的性质,熟练掌握全等三角形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网