题目内容

1.如图所示,⊙O的直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=60°,求弦CD的长.

分析 作OF⊥CD于点F,连接OD,直角△OEF中利用三角函数即可求得OF的长,然后在直角△ODF中利用勾股定理即可求得DF的长,然后根据垂径定理可以得到CD=2DF,从而求解.

解答 解:作OF⊥CD于点F,连接OD.
∵AE=2,EB=6,
∴AB=AE+BE=8,半径长是4.
∵在直角△OEF中,OE=OA-AE=4-2=2,
sin∠DEB=$\frac{OF}{OE}$,
∴OF=OE•sin∠DEB=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
在直角△ODF中,
∵DF=$\sqrt{O{D}^{2}-O{F}^{2}}$=$\sqrt{13}$,
∴CD=2DF=2$\sqrt{13}$.

点评 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网