题目内容
如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,则∠D= °.
地球的表面积约是510 000 000千米2,用科学记数法表示为( )
A.51×107千米2
B.5.1×107千米2
C.5.1×108千米2
D.0.51×109千米2
(1)计算:
(2)解不等式组:.
如图,已知抛物线(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D.
(1)若点D的横坐标为﹣5,求抛物线的函数表达式;
(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;
(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
已知y1=x2﹣2x+3,y2=3x﹣k.
(1)当x=1时,求出使等式y1=y2成立的实数k;
(2)若关于x的方程y1+k=y2有实数根,求k的取值范围.
连续抛掷一枚均匀的硬币两次,结果出现一正一反的概率等于 .
下列运算正确的是( )
A. B.
C. D.
已知方程x2﹣6x+m=0有一个根是2,则另一个根是 ,m= .
如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.
(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;
(2)若点P在该抛物线上移动,当点p在第一象限内时,过点p作PQ⊥x轴于点Q,连接OP.若以O、P、Q为定点的三角形与以B、C、E为定点的三角形相似,直接写出点P的坐标;
(3)若点M(﹣4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.