题目内容

10.已知:如图1,四边形ABCD中,∠D=90°,∠B=∠C,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.

(1)若AE平分∠BAD,求证:EF⊥AE.
(2)如图2,若AE平分∠BAD的外角,其余条件不变,判断(1)中结论是否结论?并说明理由.

分析 (1)如图1,先根据三角形内角和定理得出∠BAE=180°-∠B-∠AEB,∠EFC=180°-∠C-∠CEF,由∠B=∠C,∠AEB=∠CEF,得到∠BAE=∠EFC,再由角平分线定义得出∠BAE=∠DAE,等量代换得到∠EFC=∠DAE.由平角的定义得出∠EFC+∠EFD=180°,那么∠DAE+∠EFD=180°,再根据四边形内角和定理求出∠AEF+∠D=360°-(∠DAE+∠EFD)=180°,进而得到∠AEF=90°,由垂直的定义证明出EF⊥AE;
(2)如图2,先根据三角形外角的性质得出∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,由∠ABC=∠BCD,∠AEB=∠CEF,得到∠1=∠F,再由角平分线定义得出∠1=∠2,等量代换得到∠F=∠2.由平角的定义得出∠2+∠EAD=180°,那么∠F+∠EAD=180°,再根据四边形内角和定理求出∠AEF+∠D=360°-(∠F+∠EAD)=180°,进而得到∠AEF=90°,由垂直的定义得出EF⊥AE.

解答 (1)证明:如图1,∵∠BAE=180°-∠B-∠AEB,∠EFC=180°-∠C-∠CEF,
∠B=∠C,∠AEB=∠CEF,
∴∠BAE=∠EFC,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠EFC=∠DAE.
∵∠EFC+∠EFD=180°,
∴∠DAE+∠EFD=180°,
∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°,
∵∠D=90°,
∴∠AEF=90°,
∴EF⊥AE;

(2)解:如图2,若AE平分∠BAD的外角,其余条件不变,(1)中结论没有变化.理由如下:
∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,
∠ABC=∠BCD,∠AEB=∠CEF,
∴∠1=∠F,
∵AE平分∠BAD的外角,
∴∠1=∠2,
∴∠F=∠2.
∵∠2+∠EAD=180°,
∴∠F+∠EAD=180°,
∴∠AEF+∠D=360°-(∠F+∠EAD)=180°,
∵∠D=90°,
∴∠AEF=90°,
∴EF⊥AE.

点评 本题考查了多边形内角与外角,三角形、四边形内角和定理,三角形外角的性质,角平分线、垂直的定义,理清各角之间的关系,得出∠AEF+∠D=180°是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网