题目内容

如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB和CD间的距离.
考点:垂径定理,勾股定理
专题:
分析:过点O作弦AB的垂线,垂足为E,延长AE交CD于点F,连接OA,OC;由于AB∥CD,则OF⊥CD,EF即为AB、CD间的距离;由垂径定理,易求得AE、CF的长,在构建的直角三角形中,根据勾股定理即可求出OE、OF的长,也就求出了EF的长,即弦AB、CD间的距离.
解答:解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,
∵AB∥CD,
∴OF⊥CD,
∵AB=30cm,CD=16cm,
∴AE=
1
2
AB=
1
2
×16=8cm,CF=
1
2
CD=
1
2
×12=6cm,
在Rt△AOE中,
OE=
OA2-AE2
=
102-82
=6cm,
在Rt△OCF中,
OF=
OC2-CF2
=
102-62
=8cm,
∴EF=OF-OE=8-6=2cm.
答:AB和CD的距离为2cm.
点评:本题考查的是勾股定理及垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网