题目内容

如图,已知抛物线y=-x2+px+q的对称轴为x=-3,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(-1,1).要在坐标轴上找一点P,使得△PMN的周长最小,则点P的坐标为(  )
A、(0,2)
B、(
4
3
,0)
C、(0,2)或(
4
3
,0)
D、以上都不正确
考点:二次函数综合题
专题:
分析:首先,求得抛物线的解析式,根据抛物线解析式求得M的坐标;欲使△PMN的周长最小,MN的长度一定,所以只需(PM+PN)取最小值即可.
然后,过点M作关于y轴对称的点M′,连接M′N,M′N与y轴的交点即为所求的点P(如图1);过点M作关于x轴对称的点M′,连接M′N,则只需M′N与x轴的交点即为所求的点P(如图2).
解答:解:如图,∵抛物线y=-x2+px+q的对称轴为x=-3,点N(-1,1)是抛物线上的一点,
-
p
-2
=-3
1=-1-p+q

解得,
p=-6
q=-4

∴该抛物线的解析式为y=-x2-6x-4=-(x+3)2+5,
∴M(-3,5).
∵△PMN的周长=MN+PM+PN,且MN是定值,所以只需(PM+PN)最小.
如图1,过点M作关于y轴对称的点M′,连接M′N,M′N与y轴的交点即为所求的点P.则M′(3,5).
设直线M′N的解析式为:y=ax+t(a≠0),则
5=3a+t
1=-a+t

解得,
a=1
t=2

故该直线的解析式为y=x+2.
当x=0时,y=2,即P(0,2).
同理,如图2,过点M作关于x轴对称的点M′,连接M′N,则只需M′N与x轴的交点即为所求的点P(-
4
3
,0).
综上所述,符合条件的点P的坐标是(0,2)或(-
4
3
,0).
故选:D.
点评:本题考查了二次函数的综合题.在求点P的坐标时,一定要注意题目要求是“要在坐标轴上找一点P”,所以应该找x轴和y轴上符合条件的点P,不要漏解,这是同学们容易忽略的地方.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网