题目内容
考点:角平分线的性质
专题:
分析:根据角平分线的性质可证∠ABD=∠CBD,即可求得∠CBD=∠C,即BD=CD,再根据角平分线上的点到角两边距离相等即可求得DE=DF,即可解题.
解答:解:∵∠ABC=2∠C,BD平分∠ABC,
∴∠CBD=∠C,
∴BD=CD,
∵BD平分∠ABC,
∴DE=DF,
∴△DFC的周长=DF+CD+CF=DE+BD+CF=3+5+4=12.
∴∠CBD=∠C,
∴BD=CD,
∵BD平分∠ABC,
∴DE=DF,
∴△DFC的周长=DF+CD+CF=DE+BD+CF=3+5+4=12.
点评:本题考查了角平分线上点到角两边距离相等的性质,考查了角平分线平分角的性质,考查了三角形周长的计算,本题中求证DE=DF是解题的关键.
练习册系列答案
相关题目