题目内容

已知a2-4a+1=0,则a2+
1
a2
=(  )
A、12B、13C、14D、15
考点:分式的混合运算
专题:计算题
分析:法1:由已知求出a的值,代入计算即可确定出a2+
1
a2
的值;
法2:已知等式两边除以a变形得到关系式,两边平方即可求出所求式子的值.
解答:解:法1:∵a2-4a+1=0,
∴(a-2)2-3=0,
∴a=2±
3

当a=2+
3
时,a2+
1
a2
=(a+
1
a
2-2=(2+
3
+
1
2+
3
2-2=14;
当a=2-
3
时,a2+
1
a2
=(a+
1
a
2-2=(2-
3
+
1
2-
3
2-2=14.
综上a2+
1
a2
=14;
法2:已知方程变形得:a+
1
a
=4,
两边平方得:(a+
1
a
2=a2+
1
a2
+2=16,
则a2+
1
a2
=14.
故选:C.
点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网