题目内容

如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是
 
考点:直角梯形
专题:
分析:根据题意得出AB=AD,进而得出BD的长,再利用在直角三角形中30°所对的边等于斜边的一半,进而求出CD以及利用勾股定理求出BC的长,即可得出梯形ABCD的周长.
解答:解:过点A作AE⊥BD于点E,
∵AD∥BC,∠A=120°,
∴∠ABC=60°,∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∴∠ABE=∠ADE=30°,
∴AB=AD,
∴AE=
1
2
AD=1,
∴DE=
3
,则BD=2
3

∵∠C=90°,∠DBC=30°,
∴DC=
1
2
BD=
3

∴BC=
BD2-CD2
=
(2
3
)2-(
3
)2
=3,
∴梯形ABCD的周长是:AB+AD+CD+BC=2+2+
3
+3=7+
3

故答案为:7+
3
点评:此题主要考查了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC的度数是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网