ÌâÄ¿ÄÚÈÝ
16£®ÈÏÕæÔĶÁÏÂÃæ²ÄÁϲ¢½â´ðÎÊÌ⣺ÔÚÒ»´Îº¯Êýy=kx+b£¨k¡Ù0£©ÖУ¬¿É°´Èçϲ½Öè±äÐΣº
¢Ùkx=y-b£¬
¢Úx=$\frac{1}{k}$y-$\frac{b}{k}$£¨k¡Ù0£©£¬
¢Û°Ñx=$\frac{1}{k}$y-$\frac{b}{k}$ÖеÄx£¬y»¥»»£¬µÃµ½y=$\frac{1}{k}$x-$\frac{b}{k}$£®
´ËʱÎÒÃǾͰѺ¯Êýy=$\frac{1}{k}$x-$\frac{b}{k}$£¨k¡Ù0£©½Ð×öº¯Êýy=kx+bµÄ·´º¯Êý£®
ÌØ±ðµØ£¬Èç¹ûÁ½¸öº¯Êý½âÎöʽÏàͬ£¬×Ô±äÁ¿µÄȡֵ·¶Î§Ò²Ïàͬ£¬Ôò³ÆÕâÁ½¸öº¯ÊýΪͬһº¯Êý£®
£¨1£©Çóº¯Êýy=$\frac{1}{2}$x+1ÓëËüµÄ·´º¯ÊýµÄ½»µã×ø±ê£»
£¨2£©Èôº¯Êýy=kx+2ÓëËüµÄ·´º¯ÊýÊÇͬһº¯Êý£¬ÇókµÄÖµ£®
·ÖÎö £¨1£©¸ù¾Ý·´º¯Êý¶¨ÒåÇóµÃÖ±Ïßy=$\frac{1}{2}$x+1µÄ·´º¯ÊýΪy=2x-2£¬ÁªÁ¢·½³Ì×éÇó½â¿ÉµÃ£»
£¨2£©ÏÈÇó³öº¯Êýy=kx+2µÄ·´º¯ÊýΪy=$\frac{1}{k}$x-$\frac{2}{k}$£¬¸ù¾ÝÁ½º¯ÊýΪͬһº¯Êý¿ÉµÃkµÄÖµ£®
½â´ð ½â£º£¨1£©¡ßy=$\frac{1}{2}$x+1£¬
¡ày-1=$\frac{1}{2}$x£¬
2y-2=x£¬
Ôòy=$\frac{1}{2}$x+1µÄ·´º¯ÊýΪy=2x-2£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=2x-2}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$£¬
¡àº¯Êýy=$\frac{1}{2}$x+1ÓëËüµÄ·´º¯ÊýµÄ½»µã×ø±êΪ£¨2£¬2£©£»
£¨2£©¡ßy=kx+2£¬
¡àkx=y-2£¬
x=$\frac{1}{k}$y-$\frac{2}{k}$£¬
Ôòy=kx+2µÄ·´º¯ÊýΪy=$\frac{1}{k}$x-$\frac{2}{k}$£¬
¡ßº¯Êýy=kx+2ÓëËüµÄ·´º¯ÊýÊÇͬһº¯Êý£¬
¡à$\left\{\begin{array}{l}{\frac{1}{k}=k}\\{-\frac{2}{k}=2}\end{array}\right.$£¬
½âµÃ£ºk=-1£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é·´±ÈÀýº¯ÊýÓëÒ»´Îº¯Êý½»µãÎÊÌ⣬¸ù¾Ýж¨ÒåµÃ³ö·´º¯ÊýµÄ½âÎöʽ²¢ÊìÁ·Çó½âÁ½Ö±Ïß½»µãÊǽâÌâµÄ¹Ø¼ü£®