题目内容

如图,在△ABC和△ADE中,B,D,E,C在同一条直线上,下面给出三个条件:
①AB=AC;②AD=AE;③BD=EC,请你选两个作为已知条件,余下一个作为结论,要求得到一个真命题,先完成填空,再证明.
你选择的条件:
 
,结论:
 
(填序号).
考点:等腰三角形的性质,命题与定理
专题:
分析:由已知题设①AB=AC,②AD=AE,则得∠B=∠C,∠ADE=∠AED,所以得:∠ADB=∠AEC,即得△ABD≌△ACE,从而证得③BD=CE.
解答:条件:①②,结论③.
证明:∵AB=AC,
∴∠B=∠C,
∵AD=AE,
∴∠ADE=∠AED,
∴∠ADB=∠AEC,
在△ABD和△ACE中,
∠ADB=∠AEC
∠B=∠C
AB=AC

∴△ABD≌△ACE(AAS),
∴BD=CE.
故答案为:①②,③.
点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网