ÌâÄ¿ÄÚÈÝ
7£®¼×£¬ÒÒÁ½°à½øÐÐÌøÉþ±ÈÈü£¬²ÎÈüѧÉúÿ·ÖÌøÉþµÄ¸öÊýͳ¼Æ½á¹ûÈçÏÂ±í£º| °à¼¶ | ²ÎÈüÈËÊý | ÖÐλÊý | ·½²î | ƽ¾ù×ÖÊý |
| ¼× | 55 | 149 | 191 | 135 |
| ÒÒ | 55 | 151 | 110 | 135 |
¢Ù¼×¡¢ÒÒÁ½°àѧÉúµÄƽ¾ù³É¼¨Ïàͬ£»
¢ÚÒÒ°àÓÅÐãµÄÈËÊý¶àÓÚ¼×°àÓÅÐãµÄÈËÊý£¨Ã¿·ÖÖÓÌøÉþµÄ¸öÊý¡Ý150ΪÓÅÐ㣩£»
¢Û¼×°à³É¼¨µÄ²¨¶¯±ÈÒÒ°à´ó£®ÉÏÊö½áÂÛÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¢Ù¢Ú¢Û | B£® | ¢Ù¢Ú | C£® | ¢Ù¢Û | D£® | ¢Ú¢Û |
·ÖÎö ƽ¾ùˮƽµÄÅжÏÖ÷Òª·ÖÎöƽ¾ùÊý£»ÓÅÐãÈËÊýµÄÅжϴÓÖÐλÊý²»Í¬¿ÉÒԵõ½£»²¨¶¯´óС±È½Ï·½²îµÄ´óС£®
½â´ð ½â£º´Ó±íÖпÉÖª£¬Æ½¾ù×ÖÊý¶¼ÊÇ135£¬¢ÙÕýÈ·£»
¼×°àµÄÖÐλÊýÊÇ149£¬ÒÒ°àµÄÖÐλÊýÊÇ151£¬±È¼×µÄ¶à£¬¶øÆ½¾ùÊý¶¼ÒªÎª135£¬ËµÃ÷ÒÒµÄÓÅÐãÈËÊý¶àÓÚ¼×°àµÄ£¬¢ÚÕýÈ·£»
¼×°àµÄ·½²î´óÓÚÒÒ°àµÄ£¬ÓÖ˵Ã÷¼×°àµÄ²¨¶¯Çé¿ö´ó£¬ËùÒÔ¢ÛÒ²ÕýÈ·£®
¹ÊÑ¡A£®
µãÆÀ ±¾Ì⿼²éÁËÆ½¾ùÊý£¬ÖÐλÊý£¬·½²îµÄÒâÒ壮ƽ¾ùÊýƽ¾ùÊý±íʾһ×éÊý¾ÝµÄƽ¾ù³Ì¶È£®ÖÐλÊýÊǽ«Ò»×éÊý¾Ý´ÓСµ½´ó£¨»ò´Ó´óµ½Ð¡£©ÖØÐÂÅÅÁкó£¬×îÖмäµÄÄǸöÊý£¨»ò×îÖмäÁ½¸öÊýµÄƽ¾ùÊý£©£»·½²îÊÇÓÃÀ´ºâÁ¿Ò»×éÊý¾Ý²¨¶¯´óСµÄÁ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®¼ÆËã$\frac{{{{£¨{x+y}£©}^2}-{{£¨{x-y}£©}^2}}}{4xy}$µÄ½á¹ûΪ£¨¡¡¡¡£©
| A£® | 1 | B£® | $\frac{1}{2}$ | C£® | $\frac{1}{4}$ | D£® | 0 |
2£®
Èçͼ£¬Å×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©µÄ¿ª¿ÚÏòÉÏ£¬ÓëxÖá½»µãµÄºá×ø±ê·Ö±ðΪ-1¡¢3£¬ÔòÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | ¶Ô³ÆÖáÊÇÖ±Ïßx=1 | B£® | ·½³Ìax2+bx+c=0µÄ½âÊÇx1=-1£¬x2=3 | ||
| C£® | µ±x£¼1£¬yËæxµÄÔö´ó¶øÔö´ó | D£® | µ±-1£¼x£¼3ʱ£¬y£¼0 |
12£®
Èçͼ£¬M£¬N£¬P£¬QÊÇÊýÖáÉϵÄËĸöµã£¬ÕâËĸöµãÖÓ×îÊʺϱíʾ$\sqrt{7}$µÄÊÇ£¨¡¡¡¡£©
| A£® | Mµã | B£® | Nµã | C£® | Pµã | D£® | Qµã |
19£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{£¨-4£©^{2}}$=2 | B£® | $\sqrt{2}$¡Á$\sqrt{5}$=$\sqrt{10}$ | C£® | £¨$\sqrt{2}$£©2=4 | D£® | $\sqrt{6}$¡Â$\sqrt{2}$=3 |
16£®ÒÑÖªµãA£¨1£¬y1£©£¬B£¨2£¬y2£©£¬C£¨-3£¬y3£©¶¼ÔÚ·´±ÈÀýº¯Êýy=$\frac{{{k^2}+1}}{x}$µÄͼÏóÉÏ£¬Ôòy1£¬y2£¬y3µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A£® | y3£¼y1£¼y2 | B£® | y1£¼y2£¼y3 | C£® | y2£¼y1£¼y3 | D£® | y3£¼y2£¼y1 |