题目内容


某山区的一种特产由于运输原因,长期只能在当地销售,当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=(万元)。当地政府拟规划加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出60万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售。在外地销售的投资收益为:每投入万元,可获利润Q=(万元)。

(1)若不进行开发,求5年所获利润的最大值是多少?

(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?

(3)根据(1)、(2),该方案是否具有实施价值?


1)∵每投入万元,可获得利润P=(万元),

∴当=60时,所获利润最大,最大值为41万元。

∴若不进行开发,5年所获利润的最大值是:41×5=205(万元)。

(2)前两年:0≤≤40,此时因为P随的增大而增大,

所以=40时,P值最大,

即这两年的获利最大为:2×[ ]=66(万元)。

后三年:设每年获利,设当地投资额为,则外地投资额为100-

=P+Q=[]+[]

=﹣2+60+129=﹣(﹣30)2+1029。

∴当=30时,y最大且为1029。

∴这三年的获利最大为1029×3=3087(万元)

∴5年所获利润(扣除修路后)的最大值是:66+3087﹣50×2=3153(万元)。

(3)规划后5年总利润为3153万元,不实施规划方案仅为205万元,故具有很大的实施价值。

【考点】二次函数的应用(利润问题)。


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网