题目内容

17.如图,已知斜坡AB的水平宽度是8米,斜坡AB的坡度为1:2,则斜坡AB的长为(  )
A.4$\sqrt{3}$B.4$\sqrt{5}$C.18D.8$\sqrt{3}$

分析 首先根据斜坡AB的水平宽度是8米,斜坡AB的坡度为1:2,可得AC=8米,BC=4米,然后利用勾股定理求出AB的长度.

解答 解:∵斜坡AB的水平宽度是8米,斜坡AB的坡度为1:2,
∴AC=8米,BC=4米,
则AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{8}^{2}+{4}^{2}}$=4$\sqrt{5}$(米).
故选B.

点评 本题考查了解直角三角形的应用-坡度坡角问题,解答本题的关键是正确理解坡度的定义,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度.也考查了勾股定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网