ÌâÄ¿ÄÚÈÝ
4£®½â·½³Ì×é¡¢½â²»µÈʽ×é²¢°Ñ½â¼¯±íʾÔÚÊýÖáÉϱíʾ£¨1£©$\left\{\begin{array}{l}{3£¨m+n£©+4£¨m-n£©=15}\\{\frac{m+n}{2}+\frac{m-n}{6}=1}\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}{5x-6¡Ü2£¨x+3£©}\\{\frac{x}{4}-1£¼\frac{x-3}{3}}\end{array}\right.$£®
·ÖÎö £¨1£©·½³Ì×éÕûÀíºó£¬ÀûÓôúÈëÏûÔª·¨Çó³ö½â¼´¿É£»
£¨2£©·Ö±ðÇó³ö²»µÈʽ×éÖÐÁ½²»µÈʽµÄ½â¼¯£¬ÕÒ³öÁ½½â¼¯µÄ¹«¹²²¿·Ö£¬¼´¿ÉÈ·¶¨³ö²»µÈʽ×éµÄ½â¼¯£¬±íʾÔÚÊýÖáÉϼ´¿É£®
½â´ð ½â£º£¨1£©·½³Ì×éÕûÀíµÃ£º$\left\{\begin{array}{l}{7m-n=15¢Ù}\\{2m+n=3¢Ú}\end{array}\right.$£¬
¢Ú+¢ÙµÃ£º9m=18£¬¼´m=2£¬
°Ñm=2´úÈë¢ÚµÃ£ºn=-1£¬
Ôò·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{m=2}\\{n=-1}\end{array}\right.$£®
£¨2£©$\left\{\begin{array}{l}{5x-6¡Ü2£¨x+3£©¢Ù}\\{\frac{x}{4}-1£¼\frac{x-3}{3}¢Ú}\end{array}\right.$£¬
Óɢٵãºx£¼4£»
Óɢڵãºx£¾0£¬
¹Ê²»µÈʽ×éµÄ½â¼¯Îª0£¼x£¼4£¬
±íʾÔÚÊýÖáÉÏ£¬ÈçͼËùʾ£º![]()
µãÆÀ ´ËÌ⿼²éÁ˶þÔªÒ»´Î·½³Ì×飬һԪһ´Î²»µÈʽ×éµÄ½â·¨£¬ÆäÖнâ¶þÔªÒ»´Î·½³Ì×éµÄ·½·¨£º´úÈëÏûÔª·¨ºÍ¼Ó¼õÏûÔª·¨£¬²»µÈʽ×éÈ¡½â¼¯µÄ·½·¨Îª£ºÍ¬´óÈ¡´ó£»Í¬Ð¡È¡Ð¡£»´óСС´óÈ¥Öм䣻´ó´óССÎ޽⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®µãA£¨-4£¬y1£©£¬B£¨2£¬y2£©¶¼ÔÚÖ±Ïßy=-x-1ÉÏ£¬Ôòy1Óëy2µÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
| A£® | y1£¾y2 | B£® | y1=y2 | C£® | y1£¼y2 | D£® | ÎÞ·¨È·¶¨ |
19£®ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | x=3£¬y=2ÊÇ·½³Ì3x-4y=1µÄÒ»×é½â | |
| B£® | ·½³Ì3x-4y=1ÓÐÎÞÊý×é½â£¬¼´x£¬y¿ÉÒÔÈ¡ÈκÎÊýÖµ | |
| C£® | ·½³Ì3x-4y=1Ö»ÓÐÁ½×é½â£¬Á½×é½âÊÇ£º$\left\{\begin{array}{l}{x=1}\\{y=\frac{1}{2}}\end{array}\right.$ºÍ$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$ | |
| D£® | ·½³Ì3x-4y=1¿ÉÄÜÎÞ½â |
16£®ÁâÐξßÓжøÆ½ÐÐËıßÐβ»Ò»¶¨¾ßÓеÄÐÔÖÊÊÇ£¨¡¡¡¡£©
| A£® | ÄڽǺÍÊÇ360¡ã | B£® | ¶Ô½ÇÏßÏàµÈ | C£® | ¶Ô±ßƽÐÐÇÒÏàµÈ | D£® | ¶Ô½ÇÏß»¥Ïà´¹Ö± |
13£®ÔÚ0£¬-1.5£¬1£¬-2ËĸöÊýÖУ¬×îСµÄÊýÊÇ£¨¡¡¡¡£©
| A£® | 0 | B£® | 1 | C£® | -2 | D£® | -1.5 |