题目内容


把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点D旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.

(1)如图(1),当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP·CQ=       

(2)将三角板DEF由图(1)所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP·CQ的值是否改变?说明你的理由.

(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图(2),图(3)供解题用)


解:(1)∵∠A=∠C=45°,∠APD=∠QDC=90°,∴△APD∽△CDQ.

∴AP:CD=AD:CQ.∴即AP×CQ=AD×CD,∵AB=BC=4,∴斜边中点为O,∴AP=PD=2,∴AP×CQ=2×4=8;

(2)AP•CQ的值不会改变.理由如下:∵在△APD与△CDQ中,∠A=∠C=45°,∠APD=180°-45°-(45°+α)=90°-α,∠CDQ=90°-α

∴∠APD=∠CDQ.∴△APD∽△CDQ.∴

∴AP•CQ=AD•CD=AD2=(AC)2=8.

(3)情形1:当0°<α<45°时,2<CQ<4,即2<x<4,
此时两三角板重叠部分为四边形DPBQ,过D作DG⊥AP于G,DN⊥BC于N,∴DG=DN=2由(2)知:AP•CQ=8得AP=

于是y=AB•BC-CQ•DN-AP•DG=8-x-(2<x<4)
情形2:当45°≤α<90°时,0<CQ≤2时,即0<x≤2,此时两三角板重叠部分为△DMQ,由于AP=,PB=-4,易证:△PBM∽△DNM,

   即     解得BM=

∴MQ=4-BM-CQ=4-x-.于是y=MQ•DN=4-x-(0<x≤2).
综上所述,当2<x<4时,y=8-x-

当0<x≤2时,y=4-x-

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网