题目内容

10.在△ABC中,AB=AC,MN垂直平分AB分别交AB、BC于M、N.如果△ACN是等腰三角形,那么∠B的大小是45°或36°.

分析 首先根据线段垂直平分线的性质得出NA=NB,即可得到∠B=∠BAN=∠C.然后对△ANC中的边进行讨论,然后在△ABC中,利用三角形内角和定理即可求得∠B的度数.

解答 解:∵MN是AB的中垂线,
∴NB=NA.
∴∠B=∠BAN,
∵AB=AC,
∴∠B=∠C.
设∠B=x°,则∠C=∠BAN=x°.
1)当AN=NC时,∠CAN=∠C=x°.
则在△ABC中,根据三角形内角和定理可得:4x=180,
解得:x=45,则∠B=45°;
2)当AN=AC时,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此时不成立;
3)当CA=CN时,∠NAC=∠ANC=$\frac{180°-x°}{2}$.
在△ABC中,根据三角形内角和定理得到:x+x+x+$\frac{180-x}{2}$=180,
解得:x=36.
即∠B的度数为45°或36°.
故答案为45°或36°.

点评 本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,正确对△ANC的边进行讨论是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网