题目内容
请先阅读下列一组内容,然后解答问题:
因为:
=1-
,
=
-
,
=
-
…
=
-
所以:
+
+
+…+
=(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
+
-
+
-
+…+
-
=1-
=
问题:
计算:
①
+
+
+…+
;
②
+
+
+…+
.
因为:
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9×10 |
| 1 |
| 9 |
| 1 |
| 10 |
所以:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 9×10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 10 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 10 |
| 9 |
| 10 |
计算:
①
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2004×2005 |
②
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 49×51 |
考点:有理数的混合运算
专题:阅读型,规律型
分析:(1)分子为1,分母是两个连续自然数的乘积,第n项为
=
-
,依此抵消即可求解;
(2)分子为1,分母是两个连续奇数的乘积,第n项为
=
(
-
),依此抵消即可求解.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)分子为1,分母是两个连续奇数的乘积,第n项为
| 1 |
| n(2n-1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| 2n-1 |
解答:解:①
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
;
②
+
+
+…+
=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(1-
+
-
+
-
+…+
-
)
=
×(1-
)
=
×
=
.
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2004×2005 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2004 |
| 1 |
| 2005 |
=1-
| 1 |
| 2005 |
=
| 2004 |
| 2005 |
②
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 49×51 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 49 |
| 1 |
| 51 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 49 |
| 1 |
| 51 |
=
| 1 |
| 2 |
| 1 |
| 51 |
=
| 1 |
| 2 |
| 50 |
| 51 |
=
| 25 |
| 51 |
点评:考查了有理数的混合运算,解决这类题目要找出变化规律,消去中间项,只剩首末两项,使运算变得简单.
练习册系列答案
相关题目
若2x+1=4,则4x+1等于( )
| A、6 | B、7 | C、8 | D、9 |
一个正方形的边长增加2cm,它的面积就增加了24cm2,这个正方形原来的边长是( )
| A、5cm | B、6cm |
| C、8cm | D、10cm |