题目内容


如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为__________


2或2或2

【考点】勾股定理;含30度角的直角三角形;直角三角形斜边上的中线.

【专题】压轴题;分类讨论.

【分析】利用分类讨论,当∠APB=90°时,易得∠PAB=30°,利用锐角三角函数得AP的长;当∠ABP=90°时,分两种情况讨论,情况一:如图2易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半得出结论.

【解答】解:当∠APB=90°时(如图1),

∵AO=BO,

∴PO=BO,

∵∠AOC=60°,

∴∠BOP=60°,

∴△BOP为等边三角形,

∵AB=BC=4,

∴AP=AB•sin60°=4×=2

当∠ABP=90°时(如图2),

∵∠AOC=∠BOP=60°,

∴∠BPO=30°,

∴BP===2

在直角三角形ABP中,

AP==2

情况二:如图3,∵AO=BO,∠APB=90°,

∴PO=AO,

∵∠AOC=60°,

∴△AOP为等边三角形,

∴AP=AO=2,

故答案为:2或2或2.

【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网