题目内容

如图,△ACB与△BDA全等,AC与BD对应,BC与AD对应,写出其余的对应边和对应角.

见解析 【解析】试题分析:利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系. 试题解析: ∵ △ACB≌△BDA, ∴AB=BA;∠CBA=∠DAB,∠CAB=∠DBA,∠C=∠D.
练习册系列答案
相关题目

如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.

证明见解析. 【解析】试题分析:过点C作CF∥AB,结合已知可得∠A+∠ACF=180°,再根据已知角关系可得∠D+∠FCD=180°,根据平行线的判定即可得到CF∥DE,此时再次运用平行线的判定即可解答本题. 试题解析:过点C作CF∥AB. ∵CF∥AB, ∴∠A+∠ACF=180°. ∵∠A+∠ACD+∠D=360°, ∴∠D+∠FCD=180°, ∴...

到三角形三个顶点的距离都相等的点是这个三角形的(  )

A. 三条高的交点 B. 三条角平分线的交点

C. 三条中线的交点 D. 三条边的垂直平分线的交点

D 【解析】【解析】 到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选D.

已知在△ABC中,∠ABC=∠ACB,∠1=∠2,求证:AD平分∠BAC。

证明见解析 【解析】试题分析:易证AB=AC和BD=CD,即可证明△ABD≌△ACD,可得∠BAD=∠CAD,即可解题. 试题解析:∵∠ABC=∠ACB, ∴AB=AC, ∵∠1=∠2, ∴BD=CD, 在△ABD和△ACD中, , ∴△ABD≌△ACD(SSS), ∴∠BAD=∠CAD, ∴AD平分∠BAC.

如图,木工师傅在做完门框后,为防止变形常常象图中所示那样钉上两条斜拉的木条(图中的AB,CD两根木条),这样做是运用了三角形的(  )

A. 全等性 B. 灵活性 C. 稳定性 D. 对称性

C 【解析】三角形具有稳定性,其他多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变,故这样做是运用了三角形的稳定性. 故选:C.

如图所示,D,E分别是△ABC的边AC.BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为 ( )

A. 15° B. 20° C. 25° D. 30°

D 【解析】∵△ADB≌△EDB≌△EDC, ∴∠C=∠DBE=∠DBA,∠DEC=∠DEB=∠A=90°, ∴∠C=30° 故选D.

下列说法正确的是(  )

①用一张相纸冲洗出来的10张1寸相片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等形的面积一定相等.

A. 1个 B. 2个 C. 3个 D. 4个

C 【解析】能够完全重合的两个图形叫做全等形。 ①正确,用一张相纸冲洗出来的10张1寸相片,各相片可以完全重合,故是全等形; ②正确,我国国旗上的4颗小五角星是全等形; ③错误,所有的正方形边长不一定一样,故不能完全重合,不能称都是全等形; ④正确,全等形可以完全重合,故其面积一定相等。 故选:C.

如图,AB∥FC,DE=EF,AB=15,CF=8,则BD等于( )

A. 8 B. 7 C. 6 D. 5

B 【解析】∵AB//CF, ∴∠A=∠ECF, 又∵DE=EF,∠AED=∠CEF, ∴△ADE≌△CFE, ∴AD=CF=8, ∴BD=AB-AD=15-8=7, 故选B.

多项式有______项,它们分别是______

3 【解析】多项式中每个单项式叫做多项式的项,由此可得多项式有3项,它们分别是.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网