题目内容
如图4222,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.
(1)求证:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BDC的度数.
![]()
(1)证明:∵∠ABC=90°,∴∠DBE=180°-∠ABC=90°.
∴∠ABE=∠CBD.
在△ABE和△CBD中,
∴△ABE≌△CBD(SAS).
(2)解:∵AB=CB,∠ABC=90°,
∴△ABC是等腰直角三角形.∴∠ECA=45°.
∵∠CAE=30°,∠BEA=∠ECA+∠EAC,
∴∠BEA=45°+30°=75°.
由①知∠BDC=∠BEA,∴∠BDC=75°.
练习册系列答案
相关题目