题目内容


如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.                                                 

(1)求BD的长;                                                                             

(2)若△DCN的面积为2,求四边形ABNM的面积.                                   

                                                               


【考点】相似三角形的判定与性质;平行四边形的性质.                               

【专题】几何综合题.                                                                       

【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;                                            

(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到SABD=SBCD=SBCN+SCND,最后由S四边形ABNM=SABD﹣SMND求解.                  

【解答】解:(1)∵平行四边形ABCD,                                               

∴AD∥BC,AD=BC,OB=OD,                                                              

∴∠DMN=∠BCN,∠MDN=∠NBC,                                                     

∴△MND∽△CNB,                                                                         

=,                                                                                        

∵M为AD中点,                                                                              

∴MD=AD=BC,即=,                                                                 

=,即BN=2DN,                                                                          

设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,                           

∴x+1=2(x﹣1),                                                                           

解得:x=3,                                                                                      

∴BD=2x=6;                                                                                     

                                                                                                          

(2)∵△MND∽△CNB,且相似比为1:2,                                         

∴MN:CN=DN:BN=1:2,                                                                  

∴SMND=SCND=1,SBNC=2SCND=4.                                             

∴SABD=SBCD=SBCN+SCND=4+2=6                                                   

∴S四边形ABNM=SABD﹣SMND=6﹣1=5.                                                 

【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.                    

                                                                                                       


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网