题目内容
【题目】如图,在△ABC中,AB=4,若将△ABC绕点B顺时针旋转60°,点A的对应点为点A′,点C的对应点为点C′,点D为A′B的中点,连接AD.则点A的运动路径
与线段AD、A′D围成的阴影部分面积是______.
![]()
【答案】![]()
【解析】
连接AA′,由旋转的性质可得A′B=AB=4,∠ABA′=60°,即可证明△ABA′是等边三角形,根据点D是A′B的中点可知AD⊥A′B,利用∠ABD的三角函数值可求出BD、AD的长,根据S阴影=S扇形BAA′=S△ABD即可得答案.
连接AA′,
∵将△ABC绕点B顺时针旋转60°,AB=4,
∴A′B=AB=4,∠ABA′=60°,
∴△ABA′是等边三角形,
∵点D是A′B的中点,
∴AD⊥A′B,
∴BD=ABcos∠ABD=2,AD=ABsin∠ABD=2
,
∴S阴影=S扇形BAA′=S△ABD=
-
×2×2
=
.
![]()
故答案为:![]()
练习册系列答案
相关题目
【题目】已知:点A、点B在直线
的两侧.
(点A到直线
的距离小于点B到直线
的距离).
![]()
如图, (1)作点B关于直线 (2)以点C为圆心, (3)过点A作 (4)连接 |
|
根据以上作图过程及所作图形,下列四个结论中:
①
是
的切线; ②
平分
;
③
; ④
.
所有正确结论的序号是___________________________.