题目内容

如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E,F,连接EF.

(1)求证:PF平分∠BFD;

(2)若tan∠FBC= ,DF=,求EF的长.

(1)证明见解析;(2)EF=. 【解析】试题分析:(1)连接OP、BF、PF.根据切线的性质得到OP⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根据平行线的性质得到∠PFD=∠OPF,由等腰三角形的性质得到∠OPF=∠OFP,根据角平分线的定义即可得到结论;(2)由∠C=90°,得到BF是⊙O的直径,根据圆周角定理得到∠BEF=90°,推出四边形BCFE是矩形,根据矩...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网