题目内容
2.分析 作CF⊥AB于点F,设AF=x米,在直角△ACF中利用三角函数用x表示出CF的长,在直角△ABE中表示出BE的长,然后根据CF-BE=DE即可列方程求得x的值,进而求得AB的长.
解答
解:作CF⊥AB于点F,设AF=x米,
在Rt△ACF中,tan∠ACF=$\frac{AF}{CF}$,
则CF=$\frac{AF}{tan∠ACF}$=$\frac{x}{tanα}$=$\frac{x}{tan30°}$=$\sqrt{3}$x,
在直角△ABE中,AB=x+BF=4+x(米),
在直角△ABF中,tan∠AEB=$\frac{AB}{BE}$,则BE=$\frac{AB}{tan∠AEB}$=$\frac{x+4}{tan60°}$=$\frac{\sqrt{3}}{3}$(x+4)米.
∵CF-BE=DE,即$\sqrt{3}$x-$\frac{\sqrt{3}}{3}$(x+4)=3.
解得:x=$\frac{3\sqrt{3}+4}{2}$,
则AB=$\frac{3\sqrt{3}+4}{2}$+4=$\frac{3\sqrt{3}+12}{2}$(米).
答:树高AB是$\frac{3\sqrt{3}+12}{2}$米.
点评 本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.
练习册系列答案
相关题目
14.下列实数中,有理数是( )
| A. | $\sqrt{8}$ | B. | $\root{3}{4}$ | C. | $\frac{π}{2}$ | D. | 0.101001001 |
12.下列运算正确的是( )
| A. | x3+x2=x5 | B. | a3•a4=a12 | C. | (-x3)2÷x5=1 | D. | (-xy)3•(-xy)-2=-xy |