题目内容

如图,有甲、乙两张对边平行的纸条,将这两张纸条交叉重叠地放在一起,重合部分为四边形NMGH.
(1)四边形NMGH是什么形状图形?
(2)若甲纸条的宽度为6,乙纸条的宽度为3,且四边形NMGH的一个内角为30°,请你计算四边形MNGH的周长和面积.
考点:平行四边形的判定与性质
专题:几何图形问题
分析:(1)由“两组对边相互平行的四边形为平行四边形”推知四边形NMGH是平行四边形;
(2)如图,过M作ME⊥GH于点E,过点H作HF⊥GM于点F.则MH=6,MF=2.通过“在直角三角形中,30度角所对的直角边等于斜边的一半”球的GH,MG的长度,然后由平行四边形的周长和面积公式进行计算.
解答:解:(1)四边形NMGH是平行四边形.理由如下:
如图,∵甲、乙两张对边平行,
∴MN∥GH,GM∥HN,
∴四边形NMGH是平行四边形;

(2)如图,过M作ME⊥GH于点E,过点H作HF⊥GM于点F.则MH=6,MF=2.
∵∠MGH=30°
∴GM=2MH=12,GH=2FH=4,
∴四边形MNGH的周长为:2(GH+GM)=32,
四边形MNGH的面积为:GH•MH=4×6=24.
点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网