ÌâÄ¿ÄÚÈÝ
6£®Èçͼ£¬ÒÑÖª¡÷ABCÖУ¬¡ÏB=90¡ã£¬AB=8cm£¬BC=6cm£®£¨1£©ÈôP¡¢QÊÇ¡÷ABC±ßÉϵÄÁ½¸ö¶¯µã£¬ÆäÖеãP´ÓAÑØA¡úB·½ÏòÔ˶¯£¬ËÙ¶ÈΪÿÃë1cm£¬µãQ´ÓBÑØB¡úC·½ÏòÔ˶¯£¬ËÙ¶ÈΪÿÃë2cm£¬Á½µãͬʱ³ö·¢£¬Éè³ö·¢Ê±¼äΪtÃ룮
¢Ùµ±t=1Ãëʱ£¬ÇóPQµÄ³¤£»
¢Ú´Ó³ö·¢¼¸ÃëÖӺ󣬡÷PQBÊǵÈÑüÈý½ÇÐΣ¿
£¨2£©ÈôMÔÚ¡÷ABC±ßÉÏÑØB¡úA¡úC·½ÏòÒÔÿÃë3cmµÄËÙ¶ÈÔ˶¯£¬Ôòµ±µãMÔÚ±ßCAÉÏÔ˶¯Ê±£¬Çó¡÷BCM³ÉΪµÈÑüÈý½ÇÐÎʱMÔ˶¯µÄʱ¼ä£®
·ÖÎö £¨1£©¸ù¾Ý¹´¹É¶¨Àí½â´ð¼´¿É£»
£¨2£©¡÷PQBÊǵÈÑüÈý½ÇÐΣ¬¡ÏB=90¡ã£¬¿ÉÖªBP=BQ£¬ÓÃt±íʾ³öBP¡¢BQµÄ³¤£¬ÁгöµÈʽ¼´¿É½â´ð£»
£¨3£©·ÖÈýÖÖÇé¿öÌÖÂÛ£ºµ±BC=BMʱ£»µ±MC=MBʱ£»µ±CB=CMʱ£»Áгö·½³Ì½â´ð¼´¿É£®
½â´ð
½â£º£¨1£©Èçͼ1£¬
¡ßµ±t=1ʱ£¬AP=1£¬BP=7£¬BQ=2
¡àPQ=$\sqrt{{PB}^{2}+{QB}^{2}}$=$\sqrt{53}$£»
£¨2£©¡ß¡÷PQBÊǵÈÑüÈý½ÇÐΣ¬¡ÏB=90¡ã£¬
¡àBP=BQ£¬
BP=8-t£¬BQ=2t£¬
¡à8-t=2t£¬
½âµÃt=$\frac{8}{3}$£»
£¨3£©µ±BC=BMʱ£¬t=2
µ±MC=MBʱ£¬t=$\frac{13}{3}$£¬
µ±CB=CMʱ£¬t=4£®
µãÆÀ ±¾Ì⿼²éÁ˶¯µãÎÊÌâµÄº¯ÊýͼÏó£¬Í¬Ê±ÒªÊìϤµÈÑüÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ֪ʶ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÔÚº¯Êýy=$\sqrt{x-3}$ÖУ¬×Ô±äÁ¿xµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | x¡Ý3 | B£® | x£¾3 | C£® | x¡Ü3 | D£® | x£¼3 |
11£®
¾©»¦¸ßËÙÌú·ÒÑ¿ª¹¤½¨É裬ijУÑо¿ÐÔѧϰÒÔ´ËΪ¿ÎÌ⣬ÔÚÑо¿ÁгµµÄÐÐÊ»ËÙ¶Èʱ£¬µÃµ½Ò»¸öÊýѧÎÊÌ⣮Èçͼ£¬ÈôvÊǹØÓÚtµÄº¯Êý£¬Í¼ÏóΪÕÛÏßO-A-B-C£¬ÆäÖÐA£¨t1£¬350£©£¬B£¨t2£¬350£©£¬C£¨$\frac{17}{80}$£¬0£©£¬ËıßÐÎOABCµÄÃæ»ýΪ70£¬Ôòt1-t2=£¨¡¡¡¡£©
| A£® | $\frac{1}{5}$ | B£® | $\frac{3}{16}$ | C£® | $\frac{7}{80}$ | D£® | $\frac{31}{160}$ |