题目内容

如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若∠AFD=158°,则∠EDF的度数为( )

A.90° B.80° C.68° D.60°

C

【解析】

试题分析:先根据等腰三角形等边对等角的性质得到∠B=∠C,利用等角的余角相等和已知角可求出∠EDB的数,从而可求得∠EDF的度数.

【解析】
∵AB=AC

∴∠B=∠C

∵FD⊥BC于D,DE⊥AB于E

∴∠BED=∠FDC=90°

∵∠AFD=158°

∴∠EDB=∠CFD=180°﹣158°=22°

∴∠EDF=90°﹣∠EDB=90°﹣22°=68°.

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网